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Abstract

Kernel two-sample testing is a useful statistical tool in determining whether data samples arise from
different distributions without imposing any parametric assumptions on those distributions. However,
raw data samples can expose sensitive information about individuals who participate in scientific studies,
which makes the current tests vulnerable to privacy breaches. Hence, we design a new framework
for kernel two-sample testing conforming to differential privacy constraints, in order to guarantee the
privacy of subjects in the data. Unlike existing differentially private parametric tests that simply add
noise to data, kernel-based testing imposes a challenge due to a complex dependence of test statistics
on the raw data, as these statistics correspond to estimators of distances between representations of
probability measures in Hilbert spaces. Our approach considers finite dimensional approximations to
those representations. As a result, a simple chi-squared test is obtained, where a test statistic depends
on a mean and covariance of empirical differences between the samples, which we perturb for a privacy
guarantee. We investigate the utility of our framework in two realistic settings and conclude that our
method requires only a relatively modest increase in sample size to achieve a similar level of power to
the non-private tests in both settings.

1 Introduction

Several recent works suggest that it is possible to identify subjects that have participated in scientific studies
based on publicly available aggregate statistics (cf. [19, 22] among many others). The differential privacy
formalism [7] provides a way to quantify the amount of information on whether or not a single individual’s
data is included (or modified) in the data and also provides rigorous privacy guarantees in the presence of
arbitrary side information.

An important tool in statistical inference is two-sample testing, in which samples from two probability
distributions are compared in order to test the null hypothesis that the two underlying distributions are
identical against the general alternative that they are different. In this paper, we focus on nonparametric,
kernel-based two-sample testing approach and investigate the utility of this framework in a differentially
private setting. The kernel-based two-sample testing was introduced by Gretton et al [13, 14] who considers
an estimator of maximum mean discrepancy (MMD) [3], the distance between embeddings of probability
measures in a reproducing kernel Hilbert space (RKHS) (See [24] for a recent review), as a test statistic for
the nonparametric two-sample problem.

Many existing differentially private testing methods are based on categorical data, i.e. counts [11, 12, 26],
in which case a natural way to achieve privacy is simply adding noise to these counts. However, when we
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consider a more general input space X , the amount of noise needed to privatise the data essentially becomes
the order of diameter of the input space (Details in the Appendix D). For spaces such as Rd, the noise
that needs to be added can destroy the utility of the data, and hence also for the test. Hence, we take an
alternative approach, and privatise only quantities that are required for the test, as in general we require
less noise for the differential privacy of summary statistics of the data. For testing, we only require the
empirical kernel embedding 1

n

∑
i k(xi, ·) corresponding to a dataset, where xi ∈ X and k is some positive

definite kernel (discussed in Appendix C.1). Now, since kernel embedding lives in Hk, a space of functions, a
natural way to protect them is to add Gaussian Process noise [18]. Although sufficient for situations where
the functions themselves are of interest, embeddings impaired by a Gaussian process does not lie in the same
RKHS [28], and hence one cannot estimate RKHS distances between such noisy embeddings. Alternatively,
one could consider adding noise to an estimator of MMD [14]. However, asymptotic null distributions of
these estimators are data dependent and the test thresholds are typically computed by permutation testing
or by eigendecomposing centred kernel matrices of the data [15]. In this case neither of these approaches is
available in a differentially private setting as they both require further access to data.

In this paper, we build a differentially private two-sample testing framework, by considering analytic
representations of probability measures [5, 21] aimed at large scale testing scenarios. As a result, we are able
to obtain a test statistic that is based on means and covariance of feature vectors of the data. Here, the
asymptotic distribution under the null hypothesis of the test statistic does not depend on the data, making
this framework a convenient choice for differential privacy. With this setup, we will consider two approaches:
1) add noise to these mean or covariances 2) add noise to the statistic itself.

We now present the two privacy scenarios that we consider and also motivate their usage. In the first
scenario, we assume there is a trusted curator and also an untrusted tester, in which we want to protect
data from. In this setting, the trusted curator has access to the two datasets and computes the mean and
covariance of the empirical differences between the feature vectors. The curator can protect the data in two
different ways: (1) perturb mean and covariance separately and release them; or (2) compute the statistic
without perturbations and add noise to it directly. The tester takes these perturbed quantities and performs
the test at a desired significance level. Here, we separate the entities of truster and curator, as it is rarely that
a non-private decision whether to reject or not is of interest, for example tester may require test-statistic/p-
values for multiple hypothesis testing corrections. In the second scenario, we assume that there are two
data-owners, each having one data sample, and a tester, and none of the parties trust each other. Each
data-owner now has to perturbs their own mean and covariance of the feature vectors and release them to
the tester.

Under each setting, we exploit various differentially private mechanisms and empirically study the utility
of the proposed framework. In particular, we demonstrate that while the asymptotic null distributions remain
unchanged under the differentially private scenario, extra caution needs to be exercised when resorting to such
asymptotics. Unlike the non-private case, using the asymptotic null distribution to compute p-values can lead
to grossly miscalibrated Type I control. We propose a remedy for this problem, and give approximations of
the finite-sample null distributions, yielding good Type I control and power-privacy tradeoffs experimentally
in Sec. 6.

While there are several works that connect kernel methods with differential privacy, including [2, 18, 20],
this is, to the best of our knowledge, the first attempt to make the kernel-based two-sample testing procedure
differentially private.

We start by providing a brief background on kernel two-sample test using analytic representation and
on differential privacy and introduce the two privacy settings we consider in this paper in Sec. 2. We derive
essential tools for the proposed test in Sec. 3 and Sec. 4, and describe approximations to finite-sample null
distributions in Sec. 5. We illustrate the effectiveness of our algorithm in Sec. 6.

2 Background

In this section, we provide background information on kernel two-sample test using analytic representation
and the definition of algorithmic privacy that we will use in our algorithm.
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Mean embedding and smooth characteristic function tests First introduced by [5] and then ex-
tended and further analyzed by [21], these two tests are state-of-the-art kernel-based testing approaches
applicable to large datasets. Here, we will focus on the approach by [21], and in particular on the mean
embedding (ME) and on characterization based on the smooth characteristic function (SCF). Assume
that we observe samples {xi}ni=1 ∼ P and {yi}ni=1 ∼ Q, where P and Q are some probability mea-
sures on RD. We wish to test the null hypothesis H0 : P = Q against all alternatives. Both ME and
SCF tests consider finite-dimensional feature representations of the empirical measures Pn and Qn cor-
responding to the samples {xi}ni=1 ∼ P and {yi}ni=1 ∼ Q respectively. The ME test considers feature
representation given by φPn

= 1
n

∑n
i=1 [k(xi, T1), · · · , k(xi, TJ)] ∈ RJ , for a given set of test locations

{Tj}Jj=1, i.e. it evaluates the kernel mean embedding 1
n

∑n
i=1 k(xi, ·) of Pn at those locations. We write

wn = φPn
−φQn

to be the difference of the feature vectors of the empirical measures Pn and Qn. If we write

zi =
[
k(xi, T1) − k(yi, T1), · · · , k(xi, TJ) − k(yi, TJ)

]
, then wn = 1

n

∑n
i=1 zi. We also define the empirical

covariance matrix Σn = 1
n−1

∑n
i=1(zi −wn)(zi −wn)>. The final statistic is given by

sn = n w>n (Σn + γnI)−1wn, (1)

where, as [21] suggest, a regularization term γnI is added onto the empirical covariance matrix for numer-
ical stability. This regularization parameter will also play an important role in analyzing sensitivity of this
statistic in a differentially private setting. Following [21, Theorem 2], one should take γn → 0 as n → ∞,
and in particular, γn should decrease at a rate of O(n−1/4). The SCF setting uses the statistic of the same
form, but considers features based on empirical characteristic functions [25].

Thus, it suffices to set zi ∈ RJ to

zi =
[
g(xi) cos(x>i Tj)− g(yi) cos(y>i Tj), g(xi) sin(x>i Tj)− g(yi) sin(y>i Tj)

]J
j=1

,

where {Tj}J/2j=1 is a given set of frequencies, and g is a given function which has an effect of smoothing the
characteristic function estimates (cf. [5] for derivation). The test then proceeds in the same way. For both
the cases, the distribution of the test statistic (1) under the null hypothesis H0 : P = Q converges to a chi-
squared distribution with J degrees of freedom. This follows from a central limit theorem argument whereby√
nwn converges in law to a zero-mean multivariate normal distribution N (0,Σ) where Σ = E[zz>], while

Σn + γnI → Σ in probability.
While [5] uses random distribution features, i.e. test locations/frequencies {Tj}j are sampled randomly

from a predefined distribution, [21] selects test locations/frequencies {Tj}j which maximize the test power,
yielding interpretable differences between the distributions under consideration. Throughout the paper, we
assume that we use bounded kernels in the ME test, in particular k(x,y) ≤ κ/2, ∀x,y, and that the
weighting function in the SCF test is also bounded: h(x) ≤ κ/2 Hence, ||zi||2 ≤ κ

√
J in both cases, for any

i ∈ [1, n].

Differential privacy Given an algorithm M and neighbouring datasets D, D′ differing by a single entry,

the privacy loss of an outcome o is L(o) = log
Pr(M(D)=o)

Pr(M(D′)=o)
. The mechanism M is called ε-DP if and only

if |L(o)| ≤ ε,∀o,D,D′. A weaker version of the above is (ε, δ)-DP, if and only if |L(o)| ≤ ε, with probability
at least 1 − δ. The definition states that a single individual’s participation in the data do not change the
output probabilities by much, which limits the amount of information that the algorithm reveals about any
one individual.

A way of designing differentially private algorithms is by adding noise to the algorithms’ outputs. Suppose
a deterministic function h : D 7→ Rp computed on sensitive data D outputs a p-dimensional vector quantity.
For making h private, we add noise in function h [6] which is calibrated to the global sensitivity, GSh, of
function h defined by the maximum difference in terms of L2-norm, ||h(D) − h(D′)||2, for neighboring D
and D′. In the case of Gaussian mechanism (Theorem 3.22 in [8]), the output is perturbed by ; h̃(D) =

3



Figure 1: Two privacy settings. (A) A trusted curator releases a private test statistic or private mean and
covariance of empirical differences between the features. (B) Data owners release private feature means
and covariances calculated from their samples. In both cases, an untrusted tester performs a test using the
private quantities.

h(D)+N (0, GS2
hσ

2Ip). The perturbed function h̃(D) is (ε, δ)-DP, where σ ≥
√

2 log(1.25/δ)/ε, for ε ∈ (0, 1).
In Sec. 3, we exploit several existing differentially private mechanisms to achieve differentially private test
statistics.

When constructing our tests, we use two important properties of differential privacy. The composability
theorem [6] tells us that the strength of privacy guarantee degrades with repeated use of DP-algorithms.
In particular, when two differentially private subroutines are combined, where each one guarantees (ε1, δ1)-
DP and (ε2, δ2)-DP respectively by adding independent noise, the parameters are simply composedby (ε1 +
ε2, δ1 + δ2). Furthermore, post-processing invariance [6] tells us that the composition of any arbitrary data-
independent mapping with an (ε, δ)-DP algorithm is also (ε, δ)-DP.

Privacy settings We consider the two different privacy settings as shown in Fig. 1:
(A) Trusted-curator (TC) setting: there is a trusted entity called curator that handles datasets and
outputs the private test statistic, either in terms of perturbed w̃n and Σ̃n, or in terms of perturbed test
statistic s̃n. An untrusted tester performs a chi-square test given these quantities.
(B) No-trusted-entity (NTE) setting: each data owner outputs private mean and covariance of the feature
vectors computed on their own dataset, meaning that the owner of dataset Dx outputs w̃x

n and Σ̃x
n and the

owner of dataset Dy outputs w̃y
n and Σ̃y

n. An untrusted tester performs a chi-squared test given these
quantities.

3 Trusted-curator setting

In this setting, a trusted curator releases either a private test statistic or private mean and covariance which
a tester can use to perform a chi-square test. Given a total privacy budget (ε, δ), when we perturb mean
and covariance separately, we spend (ε1, δ1) for mean perturbation and (ε2, δ2) for covariance perturbation,
such that ε = ε1 + ε2 and δ = δ1 + δ2.

3.1 Perturbing mean and covariance

Mean perturbation We obtain a private mean by adding Gaussian noise based on the analytic Gaussian
mechanism recently proposed in [1]. The main reason for using this Gaussian mechanism over the original
[8] is that it provides a DP guarantee with smaller noise. For wn : D → RJ that has the global L2-sensitivity
GS2(wn), the analytic Gaussian mechanism produces w̃n(D) = wn(D) + n, where n∼N (0J , σ

2
nIJ×J).
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Then w̃n(D) is (ε1, δ1)-differentially private mean vector if σn follows the regime in Theorem 9 of [8]1, here
implicitly σn depends on GS2(wn), ε1 and δ1. Assuming an entry difference between two paris of datasets
D = (Dx,Dy) and D′ = (D′x,D′y) the global sensitivity is simply

GS2(wn) = max
D,D′
‖wn(D)−wn(D′)‖2 = max

zn,z′n

1
n‖zn − z′n‖2 ≤ κ

√
J

n . (2)

Covariance perturbation To obtain a private covariance, we consider [9] which utilises Gaussian noise.
Here since the covariance matrix is given by Σn = Λ− n

n−1wnw>n , where Λ = 1
n−1

∑n
i=1 ziz

>
i , we can simply

privatize the covariance by simply perturbing the 2nd-moment matrix Λ and using the private mean w̃n,
i.e., Σ̃n = Λ̃− n

n−1w̃nw̃>n . To construct the 2nd-moment matrix Λ̃ that is (ε2, δ2)-differentially private, we

use Λ̃ = Λ + Ψ, where Ψ is obtained as follows:

1. Sample from η ∼ N (0, β2IJ(J+1)/2), where β is a function of global sensitivity GS(Λ), ε2, δ2, outlined
in Theorem A.1 in the appendix.

2. Construct an upper triangular matrix (including diagonal) with entries from η.

3. Copy the upper part to the lower part so that resulting matrix Ψ becomes symmetric.

Now using the composability theorem [6] gives us that Σ̃n is (ε, δ)-differentially private.

3.2 Perturbing test statistic

The trusted-curator can also release a differentially private statistic, to do this we use the analytic Gaussian
mechanism as before, perturbing the statistic by adding Gaussian noise. To use the mechanism, we need to
calculate the global sensitivity needed of the test statistic sn = w>n (Σn + γnI)−1wn, which we provide in
this Theorem(proof can be found in Appendix B):

Theorem 3.1. Given the definitions of wn and Λn, and the L2-norm bound on zi’s, the global sensitivity

GS2(sn) of the test statistic sn is 4κ2J
√
J

nγn

(
1 + κ2J

n−1

)
, where γn is a regularization parameter.which we set to

be smaller than the smallest eigenvalue of Λ.

4 No-trusted-entity setting

In this setting, the two samples {xi}nx
i=1 ∼ P and {yj}

ny

j=1 ∼ Q reside with different data owners each of
which wish to protect their samples in a differentially private manner. Note that in this context we allow
the size of each sample to be different. The data owners first need to agree on the given kernel k as well as

on the test locations {Tj}Jj=1. We denote now zx
i =

[
k(xi, T1), · · · , k(xi, TJ)

]>
in the case of the ME test or

zx
i =

[
h(xi) cos(x>i Tj), h(xi) sin(x>i Tj)

]J
j=1

in the case of the SCF test. Also, we denote wx
nx

= 1
nx

∑n
i=1 zx

i ,

Σx
nx

= 1
nx−1

∑nx

i=1(zx
i −wx

nx
)(zx

i −wx
nx

)>, and similarly for the sample {yj}
ny

j=1 ∼ Q. The respective means
and covariances wx

nx
, Σx

nx
and wy

ny
, Σy

ny
are computed by their data owners, which then impair them

independently with noise according to the sensitivity analysis described in Section 3.1. As a result we obtain
differentially private means and covariances w̃x

nx
, Σ̃x

nx
and w̃x

ny
, Σ̃x

nx
at their respective users. All these

quantities are then released to the tester whose role is to compute the test statistic and the corresponding
p-value. In particular, the tester uses the statistic given by

s̃nx,ny =
nxny

nx + ny
(w̃x

nx
− w̃y

ny
)>(Σ̃nx,ny + γnI)−1(w̃x

nx
− w̃y

ny
),

where Σ̃nx,ny is the pooled covariance estimate, Σ̃nx,ny =
(nx−1)Σ̃x

nx
+(ny−1)Σ̃y

ny

nx+ny−2 .

1We utilise the author’s code available at https://github.com/BorjaBalle/analytic-gaussian-mechanism
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5 Analysis of null distributions

In the previous sections, we discussed necessary tools to make the kernel two sample tests private in two
different settings by considering sensitivity analysis of quantities of interest.2. In this section, we consider
the distributions of the test statistics under the null hypothesis P = Q for each of the two privacy settings.

5.1 Trusted-curator setting: perturbed mean and covariance

In this scheme, noise is added both to the mean vector wn and to the covariance matrix Σn (by dividing
the privacy budget between these two quantities). Let us denote the perturbed mean by w̃n and perturbed
covariance with Σ̃n. The noisy version of the test statistic s̃n is then given by

s̃n = nw̃>n (Σ̃n + γnI)−1w̃n (3)

where γn is a regularization parameter just like in the non-private statistic (1). We show below that the
asymptotic null distribution (as sample size n→∞) of this private test statistic is in fact identical to that
of the non-private test statistic. Intuitively, this is to be expected: as the number of samples increases, the
contribution to the aggregate statistics of any individual observation diminishes, and the variance of the
added noise goes to zero.

Theorem 5.1. Assuming the Gausssian noise for w̃n with the sensitivity bound in (2) and the perturbation
mechanism introduced in Section 3.1 for Σ̃n, s̃n and sn converge to the same limit in distribution, as n→∞.

Proof is provided in Appendix F. Based on the Theorem, it is tempting to ignore the additive noise and
rely on the asymptotic null distribution. However, as demonstrated in Sec. 6, such tests have an inflated
number of false positives. We propose a non-asymptotic regime in order to improve approximations of the
null distribution when computing the test threshold. In particular, recall that we previously relied on

√
nwn

converging to a zero-mean multivariate normal distribution N (0,Σ), with Σ = E[zz>] [5]. In the private
setting, we will also approximate the distribution of

√
nw̃n with a multivariate normal, but consider explicit

non-asymptotic covariances which appear in the test statistic. Namely, the covariance of
√
nw̃n is Σ +nσ2

nI
and its mean is 0, so we will approximate its distribution by N (0,Σ + nσ2

nI). The test statistic can be

understood as a squared norm of the vector
√
n
(
Σ̃n + γnI

)−1/2

w̃n. Under the normal approximation to

√
nw̃n and by treating Σ̃n as fixed (note that this is a quantity released to the tester),

√
n
(
Σ̃n + γnI

)−1/2

w̃n

is another multivariate normal, i.e. N (0,C), where C = (Σ̃n + γnI)−1/2(Σ + nσ2
nI)(Σ̃n + γnI)−1/2. The

overall statistic thus follows a distribution given by a weighted sum
∑J
j=1 λjχ

2
j of independent chi-squared

distributed random variables, with the weights λj given by the eigenvalues of C. Note that this approximation
to the null distribution depends on a non-private true covariance Σ. While that is clearly not available to
the tester, we propose to simply replace this quantity with the privatized empirical covariance, i.e. Σ̃n,
so that the tester approximates the null distribution with

∑J
j=1 λ̃jχ

2
j , where λ̃j are the eigenvalues of

C̃ = (Σ̃n + γnI)−1(Σ̃n + nσ2
nI), i.e. λ̃j =

τj+nσ2
n

τj+γn
, where {τj} are the eigenvalues of Σ̃n (note that λ̃j → 1

as n → ∞ recovering back the asymptotic null). This approach, while a heuristic, gives a correct Type I
control and good power performance, unlike the approach which relies on the asymptotic null distribution
and ignores the presence of privatizing noise.

5.2 Trusted-curator setting: perturbed test statistic

In this section, we will consider how directly perturbing the test statistic impacts the null distribution. To
achieve private test statistics, we showed that we can simply use add Gaussian noise3 using the analytic

2Also look into the Appendix C.3 and C.2 for other possible approaches.
3While this may produce negative privatized test statistics, which may at first appears problematic, this poses no issues for

performing the actual test. Indeed, the test threshold is appropriately adjusted to take into account that the distribution of the
test statistic can take negative values.See Appendix C.2 and C.3 for alternative approaches for privatizing the test statistic.
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Gaussian mechanism, described in Section 3.2.
Similarly to Theorem 5.1, we have a similar theorem below, which says that the perturbed statistic then

has the same asymptotic null distribution as the original statistic.

Theorem 5.2. Using the noise variance σ2
η(ε, δ, n) defined by the upper bound in Theorem 3.1, s̃n and sn

converge to the same limit in distribution, as n→∞.

The proof follows immediately from ση(ε, δ, n) → 0, as n → ∞. As in the case of perturbed mean and
covariance, we consider approximating the null distribution with the sum of the chi-squared with J degrees
of freedom and a normal N (0, σ2

η(ε, δ, n)), i.e., the distribution of the true statistic is approximated with its
asymptotic version, whereas we use exact non-asymptotic distribution of the added noise. The test threshold
can then easily be computed by a Monte Carlo test which repeatedly simulates the sum of these two random
variables. It is important to note that since σ2

η(ε, δ, n) is independent of the data (as shown in Appendix B),
an untrusted tester can simulate the approximate null distribution without compromising privacy.

5.3 No-trusted-entity setting

Similarly as in section 5.1, as nx, ny → ∞ such that nx/ny → ρ ∈ (0, 1), asymptotic null distribution of
this test statistic remains unchanged as in the non-private setting, i.e. it is the chi-squared distribution with
J degrees of freedom. However, by again considering the non-asymptotic case and applying a chi-squared
approximation, we get improved power and type I control. In particular, the test statistic is close to a
weighted sum

∑J
j=1 λjχ

2
j of independent chi-square distributed random variables, with the weights λj given

by the eigenvalues of C =
nxny

nx+ny
(Σ̃nx,ny + γnI)−1/2(Σx/nx + Σy/ny + (σ2

nx + σ2
ny)I)(Σ̃nx,ny + γnI)−1/2,

where Σx and Σy are the true covariances within each of the samples, σ2
nx and σ2

ny are the variances of the
noise added to the mean vectors wnx and wny , respectively. While Σx and Σy are clearly not available to

the tester, the tester can replace them with their privatized empirical versions Σ̃x
nx

and Σ̃y
ny

and compute

eigenvalues λ̃j of C̃ =
nxny

nx+ny
(Σ̃nx,ny + γnI)−1/2(Σ̃x

nx
/nx + Σ̃y

ny
/ny + (σ2

nx + σ2
ny)I)(Σ̃nx,ny + γnI)−1/2.

Similarly as in the trusted-curator setting, we demonstrate that this corrected approximation to the null
distribution leads to significant improvements in power and Type I control.

6 Experiments

Here we demonstrate the effectiveness of our private kernel two-sample test on both synthetic and real prob-
lems, for testing H0 : P = Q. The total sample size is denoted by N and the number of test set samples by n.
We set the significance level to α = 0.01. Unless specified otherwise use the isotropic Gaussian kernel with
a bandwidth θ and fix the number of test locations to J = 5. Under the trusted-curator (TC) setting, we
use 20% of the samples N as an independent training set to optimize the test locations and θ using gradient
descent as in [21]. Under the no-trusted-entity (NTE) setting, we randomly sample J locations and calculate
the median heuristic bandwidth [16] from the training set.

For all our experiments, we average them over 500 runs, where each run repeats the simulation or randomly
samples without replacement from the data set. We then report the empirical estimate of P(s̃n > Tα),
computed by proportion of times the statistic s̃n is greater than the Tα, where Tα is the test threshold
provided by the corresponding approximation to the null distribution. We fix the regularization parameter γ
to 0.001 for the TC under perturbed test statistics (TCS). In TCMC and NTE, given the privacy budget of
(ε, δ), we use (0.5ε, 0.5δ) to perturb the mean and covariance seperately. We compare these to its non-private
counterpart ME and SCF. More experimental details and experiments can be found in Appendix E.

6.1 Synthetic data

We demonstrate our tests on 4 separate synthetic problems, namely, Same Gaussian (SG), Gaussian mean
difference (GMD), Gaussian variance difference (GVD) and Blobs, with the specifications of P and Q sum-
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Figure 2: Type I error for the SG dataset , Power for the GMD, GVD, Blobs dataset over 500 runs, with
δ = 1e−5. Top: Varying ε with n = 10000. Bottom: Varying n with ε = 2.5. Here *-asym represents
using the asymptotic χ2 null distribution, while *-samp represents sampling locations and using the median
heuristic bandwidth.

marized in Table. 2. The same experimental setup was used in [21]. For the Blobs dataset, we use the SCF
approach as the baseline, and also the basis for our algorithms, since [5, 21] showed that SCF outperforms
the ME test here.

Varying privacy level ε We now fix the test sample size n to be 10 000, and vary ε between 0 and
5 with a fixed δ = 1e − 5. The results are shown in the top row of Figure 2. For SG dataset, where
H0 : P = Q is true, we can see that if one simply applies the asymptotic null distribution of a χ2 on top,
we will obtain a massively inflated type I error. This is however not the case for TCMC, TCS and NTE,
where the type I error is approximately controlled at the right level, this is shown more clearly in Figure 5
in the Appendix. In GMD, GVD and Blobs dataset, the null hypothesis does not hold, and we see that our
algorithms indeed discover this difference. As expected we observe a trade-off between privacy level and also
power, for increasing privacy (decreasing ε), we have less power. These experiments also reveals the order
of performance of these algorithms, i.e. TCS > TCMC > NTE. This is not surprising, as for TCMC and
NTE, we are pertubing the mean and covariance separately, rather than the statistic directly, which is the
direct quantity we want to protect.

The power analysis for the SVD and Blobs dataset also reveal the interesting nature of sampling versus
optimisation in our two settings. In the SVD dataset, we observe that NTE performs better than TCS and
TCMC, however if we use the same test locations and bandwidth of NTE for TCS and TCMC, the order
of performance is as we expect, better for sampling over optimization. However, in the Blobs dataset, we
observe that NTE has little or no power, because this dataset is sensitive to the choice of test frequency
locations, highlighting the importance of optimisation in this case.

Varying test sample size n We now fix ε = 2.5, δ = 1.0−5 and vary n from 1000 to 15 000. The results
are shown in the bottom row of Figure 2. The results for the SG dataset further reinforce the importance of
not simply using the asymptotic null distribution, as even at very large sample size, the type I error is still
inflated when naively computing the test threshold form a chi-squared distribution. This is not the case for
TCMC, TCS and NTE, where the type I error is approximately controlled at the correct level for all sample
sizes, as shown in Figure 5.
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Figure 3: Type I error for the under25 only test,
Power for the under25 vs 25to35 test over 500 runs,
with n = 2500, δ = 1e−5. *-asym represents using
the asymptotic χ2 null distribution.

Table 1: Synthetic problems (Null hypothesis H0

holds only for SG). Gaussian Mixtures in R2, also
studied in [5, 17, 21].

Data P Q

SG N (0, I50) N (0, I50)

GMD N (0, I100) N ((1, 0, . . . , 0)>, I100)
GVD N (0, I50) N (0, diag(2, 1, . . . , 1))

Figure 4: Blobs data sampled from P on the left and
blobs data sampled from Q in the right.

6.2 Real data: Celebrity age data

We now demonstrate our tests on a real life celebrity age dataset, namely the IMDb-WIKI dataset [27],
containing 397 949 images of 19 545 celebrities and their corresponding age labels. Here, we will follow the
preprocessing of [23], and use this to construct two datasets, under25 and 25to35. Here the under25 dataset
is the images where the corresponding celebrity’s bag label is < 25, and the 25to35 dataset is the images
corresponding to the celebrity’s bag label that is between 25 and 35. The dataset under25 contains 58095
images, and the dataset 25to35 contains 126415 images.

For this experiment, we will focus on using the ME version of the test and consider the kernel

k(x,y) = exp

(
−||ϕ(x)− ϕ(y)||2

2θ2

)
where ϕ(x) : R256×256 → R4096 is the feature map learnt by the CNN in [27], mapping the image in the
original pixel space to the last layer. For our experiment, we take N = 3125, and use 20% of the data for
sampling test locations, and calculation of the median heuristic bandwidth. Note here we do not perform
optimization, due to the large dimension of the feature map ϕ. We now perform two tests, for one test we
compare samples from under25 only (i.e. H0 : P = Q holds), and the other we compares samples from
under25 to samples from 25to35 (i.e. H0 : P = Q does not hold). The results are shown in Figure 3 for
ε from 0.1 to 0.7. We observe that in the under25 only test, the TCMC, TCS and NTE all achieve the
correct Type I error rate, this is unlike their counterpart that uses the χ2 asymptotic null distribution. In
the under25 vs 25to35 two sample test, we see that our algorithms achieve maximal power at a high level of
privacy, protecting the original images from malicious intent.

7 CONCLUSION

While kernel-based hypothesis testing provides flexible statistical tools for data analysis, its utility in differen-
tially private settings is not well understood. We investigated differentially private kernel-based two-sample
testing procedures, by making use of the sensitivity bounds on the quantities used in the test statistics.
While asymptotic null distributions for the modified procedures remain unchanged, ignoring additive noise
can lead to an inflated number of false positives. Thus, we propose new approximations of the null distri-
butions under the private regime which give correct Type I control and good power-privacy tradeoffs, as
demonstrated in extensive numerical evaluations.
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[21] Wittawat Jitkrittum, Zoltán Szabó, Kacper Chwialkowski, and Arthur Gretton. Interpretable distribution features with
maximum testing power. In NIPS, 2016.

[22] Aaron Johnson and Vitaly Shmatikov. Privacy-preserving data exploration in genome-wide association studies. In Pro-
ceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’13, pages
1079–1087, New York, NY, USA, 2013. ACM.

[23] Ho Chung Leon Law, Dougal J Sutherland, Dino Sejdinovic, and Seth Flaxman. Bayesian approaches to distribution
regression. In Uncertainty in Artificial Intelligence (UAI), 2017.

[24] Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur, and Bernhard Schlkopf. Kernel mean embedding of distri-
butions: A review and beyond. Foundations and Trends in Machine Learning, 10(1-2):1–141, 2017.

10



[25] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in neural information
processing systems, pages 1177–1184, 2008.

[26] Ryan Rogers and Daniel Kifer. A new class of private chi-square hypothesis tests. In Artificial Intelligence and Statistics,
pages 991–1000, 2017.

[27] Rasmus Rothe, Radu Timofte, and Luc Van Gool. Deep expectation of real and apparent age from a single image without
facial landmarks. International Journal of Computer Vision, pages 1–14, 2018.

[28] G. Wahba. Spline Models for Observational Data. Society for Industrial and Applied Mathematics, 1990.

11



Appendix

A Covariance Perturbation

Theorem A.1 (Modified Analyze Gauss). Draw Gaussian random variables η ∼ N (0, β2IJ(J+1)/2) where

β =
κ2J
√

2 log(1.25/δ2)

(n−1)ε2
. Using η, we construct a upper triangular matrix (including diagonal), then copy

the upper part to the lower part so that the resulting matrix D becomes symmetric. The perturbed matrix
Λ̃ = Λ + D is (ε2, δ2)-differentially private4.

The proof is the same as the proof for Algorithm 1 in [9] with the exception that the global sensitivity
of Λ is

GS(Λ) = max
D,D′
‖Λ(D)−Λ(D′)‖F = max

v,v′
‖vv> − v′v′>‖F ≤ κ2J

n−1 , (4)

where v is the single entry differing in D and D′, and ‖v‖2 ≤ κ
√
J√

n−1
.

B Sensitivity of w>n (Σn + γnI)
−1 wn

We first introduce a few notations, which we will use for the sensitivity analysis.

• We split wn = m + 1√
n
v, where m = 1

n

∑n−1
i=1 zi and v = 1√

n
zn.

• Similarly, we split Λ = M>M + n
n−1vv> + γnI, where M>M = 1

n−1

∑n−1
i=1 zizi

>, we denote Mγn =

M>M + γnI, where γn > 0

• We put a dash for the quantities run on the neighbouring dataset D′, i.e., the mean vector is wn
′, the

2nd-moment matrix is Λ′ (including a regularization term of γnI). Here, wn = m + 1√
n
v′, v′ = 1√

n
z′n,

and Λ′ = M>M + n
n−1v′v′> + γnI = Mγn + n

n−1v′v′>. Similarly, the covariance given the dataset D
is Σ = Λ− n

n−1wnwn
> and the covariance given the dataset D′ is Σ′ = Λ′ − n

n−1wnwn
>.

• Note that Λ and Mγn is positive definite, and hence invertible and have positive eigenvalues, we let
eigen-vectors of Mγn are denoted by u1, · · · ,uJ and the corresponding eigenvalues by µ1, · · · , µJ . We
also define the eigen-vectors such that Q is orthogonal. Here Q has columns given by the eigen-vectors.

The L2-sensitivity of test statistic is derived using a few inequalities that are listed below:

GS2(sn) = max
D,D′

|sn(D)− sn(D′)| , (5)

= n max
v,v′

∣∣∣wn
>Σ−1wn −wn

>Σ′
−1

wn

∣∣∣ (6)

= n max
v,v′

∣∣∣∣wn
>(Λ− n

n− 1
wnwn

>)−1wn −wn
>(Λ′ − n

n− 1
wnwn

>)−1wn

∣∣∣∣ , (7)

≤ 2n max
v,v′

∣∣∣wn
>Λ−1wn −wn

>Λ′
−1

wn

∣∣∣ , due to inequality I (8)

≤ 2n max
v,v′

(∣∣∣w′n>(Λ−1 −Λ′
−1

)w′n

∣∣∣+
∣∣w>nΛ−1wn −w′n

>
Λ−1w′n

∣∣) , (9)

4 To ensure Λ̃ to be positive semi-definite, we project any negative sigular values to a small positive value (e.g., 0.01).
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≤ 2n max
v,v′
‖wn‖22‖Λ−1 −Λ′

−1‖F +
4κ2J

n

√
J

µmin(Λ)
,Cauchy Schwarz and IV, (10)

≤ 2κ2J

n
max
v,v′
‖Λ−1 −Λ′

−1‖F +
4κ2J

n

√
J

µmin(Λ)
, since ‖wn‖22 ≤ 1

n2κ
2J, (11)

≤ 4κ2J
√
JB2

(n− 1)‖µmin(Mγn)‖
+

4κ2J

n

√
J

µmin(Λ)
, due to inequality III. (12)

≤ 4κ2J
√
JB2

(n− 1)γn
+

4κ2J

n

√
J

γn
(13)

=
4κ2J

√
J

nγn

(
1 +

κ2J

n− 1

)
(14)

Here, the regularization parameter λn is the lower bound on the minimum singular values of the matrices Λ

and Mλ. Hence the final sensiitvity of the data can be upper bound by 4κ2J
√
J

nγn

(
1 + κ2J

n−1

)
.

The inequalities we used are given by

• I: Due to the ShermanMorrison formula, we can re-write

wn
>(Λ− n

n− 1
wnwn

>)−1wn = wn
>Λ−1wn +

n
n−1 (wn

>Λ−1wn)2

1 + n
n−1wn

>Λ−1wn
. (15)

Now, we can bound∣∣∣∣wn
>(Λ− n

n− 1
wnwn

>)−1wn −wn
>(Λ′ − n

n− 1
wnwn

>)−1wn

∣∣∣∣
≤|wn

>Λ−1wn −wn
>Λ′−1wn|+

∣∣∣∣∣ n
n−1 (wn

>Λ−1wn)2

1 + n
n−1wn

>Λ−1wn
−

n
n−1 (wn

>Λ′−1wn)2

1 + n
n−1w′n

>Λ′−1w′n

∣∣∣∣∣ ,
≤ 2|wn

>Λ−1wn −wn
>Λ′−1wn|, (16)

where the last line is due to wn
>Λ−1wn ≥ (wn

>Λ−1wn)2

1+wn
>Λ−1wn

≥ 0, and wn
>Λ′−1wn ≥ (w′n

>Λ′−1w′n)2

1+w′n
>Λ′−1w′n

≥ 0.

Let a = wn
>Λ−1wn and b = w′n

>Λ′−1w′n, then:

A =

∣∣∣∣ a2

1 + a
− b2

1 + b

∣∣∣∣ =

∣∣∣∣a2 − b2 + a2b− b2a
(1 + a)(1 + b)

∣∣∣∣ =

∣∣∣∣ (a− b)(a+ b) + (a− b)ab
(1 + a)(1 + b)

∣∣∣∣
=

∣∣∣∣ (a− b)[(a+ b) + ab]

(1 + a)(1 + b)

∣∣∣∣
and then we have that:

A =

∣∣∣∣ (a− b)[(1 + a)(1 + b)− 1]

(1 + a)(1 + b)

∣∣∣∣ ≤ |a− b|
Hence,

∣∣∣∣ n
n−1 (wn

>Λ−1wn)2

1+ n
n−1wn

>Λ−1wn
−

n
n−1 (wn

>Λ′−1wn)2

1+ n
n−1w′n

>Λ′−1w′n

∣∣∣∣ ≤ ( n
n−1

) (
n−1
n

)
|wn

>Λ−1wn −wn
>Λ′−1wn|

• II: For a positive semi-definite Σ, 0 ≤m>Σm ≤ ‖m‖22‖Σ‖F , where ‖Σ‖F is the Frobenius norm.

• III: We here will denote ṽ =
√

n
n−1v and ṽ′ =

√
n
n−1v′. Due to the ShermanMorrison formula,

Λ−1 = (Mγn)−1 − (Mγn)−1 ṽṽ>

1 + ṽ>(Mγn)−1ṽ
(Mγn)−1. (17)
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For any eigenvectors uj ,uk of M>M, we have

uj
>(Λ−1 −Λ′−1)uk = µ−1

j µ−1
k

(
(uj
>ṽ)(ṽ>uk)

1 + ṽ>(Mγn)−1ṽ
− (uj

>ṽ′)(ṽ′>uk)

1 + ṽ′>(Mγn)−1ṽ′

)
, (18)

where µj , µk are corresponding eigenvalues. Now, we rewrite the Frobenius norm as (since it is invariant
under any orthogonal matrix, so we take the one formed by the eigenvectors from M>M with this
property):

‖(Λ−1 −Λ′−1)‖2F = ‖Q(Λ−1 −Λ′−1)Q>‖2F ,

=

J∑
j,k

(
uj
>(Λ−1 −Λ′−1)uk

)2
,

≤ 2

(1 + ṽ>(Mγn)−1ṽ)2

J∑
j,k

(uj
>ṽ)2(ṽ>uk)2

µ2
jµ

2
k

+
2

(1 + ṽ′>(Mγn)−1ṽ′)2

J∑
j,k

(uj
>ṽ′)2(ṽ′>uk)2

µ2
jµ

2
k

, (19)

[due to ‖a− b‖22 ≤ 2‖a‖22 + 2‖b‖22],

≤ 2

(ṽ>(Mγn)−1ṽ)2

J∑
j,k

(uj
>ṽ)2(ṽ>uk)2

µ2
jµ

2
k

+
2

(ṽ′>(Mγn)−1ṽ′)2

J∑
j,k

(uj
>ṽ′)2(ṽ′>uk)2

µ2
jµ

2
k

, (20)

≤ µmin(Mγn)2

B4J

J∑
j,k

2((uj
>ṽ)2(ṽ>uk)2 + (uj

>ṽ′)2(ṽ′>uk)2)

µ2
jµ

2
k

(21)

≤ (n− 1)2µmin(Mγn)2

n2B4J

J∑
j,k

2((uj
>ṽ)2(ṽ>uk)2 + (uj

>ṽ′)2(ṽ′>uk)2)

µmin(Mγn)4
(22)

≤ (n− 1)22J

n2µmin(Mγn)2B4
(‖ṽ‖82 + ‖ṽ′‖82), (23)

≤
(

n

n− 1

)2
4J

µmin(Mγn)2
B4, (24)

(25)

Note that we can get equation 26 by noticing that:

ṽ>(Mγn)−1ṽ ≤ ‖ṽ‖22‖(Mγn)−1‖F ≤
(

n

n− 1

)
B2

√
1

µ2
1(Mγn)

+ · · ·+ 1

µ2
min(Mγn)

≤
(

n

n− 1

)
B2
√
J

µmin(Mγn)

• IV:

max
v,v′

∣∣w>nΛ−1wn −w′n
>

Λ′−1w′n
∣∣ ≤ max

v,v′

[∣∣w′n>Λ−1w′n −w′n
>

Λ′−1w′n
∣∣

+
∣∣w>nΛ−1wn −w′n

>
Λ−1w′n

∣∣]
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We write w>nΛ−1wn =
(
Λ−1/2wn

)> (
Λ−1/2wn

)
and similarly w′n

>
Λ−1w′n =

(
Λ−1/2w′n

)> (
Λ−1/2w′n

)
.

∣∣∣w>nΛ−1wn −w′n
>

Λ−1w′n

∣∣∣ =

∣∣∣∣(Λ−1/2wn

)> (
Λ−1/2wn

)
−
(
Λ−1/2w′n

)> (
Λ−1/2w′n

)∣∣∣∣
=

∣∣∣∣(Λ−1/2wn + Λ−1/2w′n

)> (
Λ−1/2wn −Λ−1/2w′n

)∣∣∣∣
=

∣∣∣∣(Λ−1/2 (wn + w′n)
)> (

Λ−1/2 (wn −w′n)
)∣∣∣∣

≤
∥∥∥Λ−1/2 (wn + w′n)

∥∥∥
2

∥∥∥Λ−1/2 (wn −w′n)
∥∥∥

2

≤
∥∥∥Λ−1/2 (wn + w′n)

∥∥∥
2

κ
√
J

n

∥∥Λ−1
∥∥1/2

F
using equality (II)

≤ 2κ2J

n2

∥∥Λ−1
∥∥
F
,

=
2κ2J

n2

√
1

µ2
1(Λ)

+ · · ·+ 1

µ2
min(Λ)

,

≤ 2κ2J

n2

√
J

µmin(Λ)
.

where the last equality comes from that Λ is real and symmetric.

C Other Possible Ways to Make the Test Private

C.1 Perturbing the Kernel Mean in RKHS

In [4], the authors proposed a new way to make the solution of the regularized risk minimization differentially
private by injecting the noise in objective itself. That is :

fpriv = arg min
(
J(f,x) +

1

n
b>f

)
However, it is not an easy task to add perturbation in functional spaces. The authors in [18] proposes to
add a sample path from gaussian processes into the function to make it private.

Lemma C.1 (Proposition 7 [18]). Let G be a sample path of a Gaussian process having mean zero and
covariance function k. Let K denote the Gram matrix i.e. K = [k(xi,xj)]

n
i,j=1. Let {fD : D ∈ D} be a

family of functions indexed by databases. Then the release of :

f̃D = fD +
∆c(β)

α
G

is (α, β)-differentially private (with respect to the cylinder σ-field F ) where ∆ is the upper bound on

sup
D∼D′

sup
n∈N

sup
x1,...,xn

√
(fD − fD′)

>
K−1 (fD − fD′) (26)

and c(β) ≥
√

2 log 2
β .

Now, we consider the optimization problem given for MMD and inject noise in the objective itself. The
optimization problem then becomes :

dpriv(p, q) = sup
f∈H, ‖f‖H≤1

[
Ex∼p[f(x)]− Ex∼q[f(x)] +

〈
f, g(∆, β, α)G

〉]
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= sup
f∈H, ‖f‖H≤1

[〈
f, µp − µq

〉
+
〈
f, g(∆, β, α)G

〉]
= sup
f∈H, ‖f‖H≤1

[〈
f, µp − µq + g(∆, β, α)G

〉]
= ‖µp − µq + g(∆, β, α)G‖H

In the similar way, one get the empirical version of the perturbed MMD distance just by replacing the true
expectation with the empirical one. The problem with a construction above where embedding is injected
with a Gaussian process sample path with the same kernel k is that the result will not be in the corresponding
RKHS Hk for infinite-dimensional spaces (these are well known results known as Kallianpur’s 0/1 laws), and
thus MMD cannot be computed, i.e. while fD is in the RKHS, f̃D need not be. This has for example been
considered in Bayesian models for kernel embeddings [10], where an alternative kernel construction using
convolution is given by:

r(x, x′) =

∫
k(x, y)k(y, x′)ν(dy), (27)

where ν is a finite measure. Such smoother kernel r ensures that the sample path from a GP (0, r) will be in
the RKHS Hk.

The key property in [18] is Prop. 8, which shows that for any h ∈ Hk and for any finite collection of
points x = (x1, . . . , xn):

h>K−1h ≤ ‖h‖2Hk
.

which implies that we only require supD∼D′ ‖fD − fD′‖Hk
≤ ∆ to hold to upper bound (26). However,

in nonparametric contexts like MMD, one usually considers permutation testing approaches. But this is not
possible in the case of private testing as one would need to release the samples from the null distribution.

C.2 Adding χ2-noise to the Test Statistics

Since the unperturbed test statistics follows the χ2 distribution under the null, hence it is again natural to
think to add noise sampled from the chi-square distribution to the test statistics sn. The probability density
function for chi-square distribution with k−degree of freedom is given as :

f(x, k) =


x

k
2
−1 exp(− x

2 )

2
k
2 Γ( k

2 )
, if x ≥ 0..

0, otherwise.

For k = 2, we simply have f(x) =
exp(− x

2 )

2 , if x ≥ 0. As we have been given sn = nwnΣ−1
n wn which

essentially depends on zi ∀i ∈ [n]. Now, we define s′n which differs from sn at only one sample i.e. s′n
depends on z1, · · · zi′ , · · · zn.We denote ∆ = sn− s′n. The privacy guarantee is to bound the following term :

p
(
sn + x = sn + x0

)
p
(
sn + x = sn + x0

) =
p
(
x = x0

)
p
(
x = s′n − sn + x0

) (28)

=
exp

(
− x0

2

)
exp

(
− s′n−sn+x0

2

) = exp
(
− sn − s′n

2

)
≤ exp

(GS2

2

)
(29)

Hence, we get the final privacy guarantee by equation (29). But the problem to this approach that since
the support for chi-square distributions are limited to positive real numbers. Hence the distribution in the
numerator and denominator in the equation (29) might have different support which essentially makes the
privacy analysis almost impossible in the vicinity of zero and beyond. Hence, to hold equation (29), x0 must
be greater than sn − s′n for all two neighbouring dataset which essentially implies x0 > GS2(sn). Hence, we
get no privacy guarantee at all when the test statistics lies very close to zero.
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However, proposing alternate null distribution is simple in this case. As sum of two chi-square random
variable is still a chi-square with increased degree of freedom. Let X1 and X2 denote 2 independent random
variables that follow these chi-square distributions :

X1 ∼ χ2(r1) and X2 ∼ χ2(r2)

then Y = (X1 + X2) ∼ χ2(r1 + r2). Hence, the perturbed statistics will follow chi-square random variable
with J + 2 degree of freedom.

C.3 Adding Noise to Σ
−1/2
n wn

One might also achieve the goal to make test statistics private by adding gaussian noise in the quantity√
nΣ
−1/2
n wn and finally taking the 2−norm of the perturbed quantity. As we have done the sentitivity

analysis of w>nΣ−1wn in the theorem 3.1, the sensitivity analysis of
√
nΣ−1/2wn can be done in very similar

way. Again from the application of slutsky’s theorem, we can see that asymptotically the perturbed test
statistics will converge to the true one. However, similar to section 5, we approximate it with the other null
distribution which shows more power experimentally under the noise as well. Suppose we have to add the

noise η ∼ N (0, σ2(ε, δn)) in the Σ
−1/2
n wn to make the statistics sn private. The noisy statistics is then can

be written as

s̃n =
√
n
(
Σ−1/2
n wn + η

)>√
n
(
Σ−1/2
n wn + η

)
Eventually, s̃n can bewritten as the following : s̃n =

(
˜

Σ
−1/2
n wn

)>
A

(
˜

Σ
−1/2
n wn

)
where

˜
Σ
−1/2
n wn =

(√
nΣ
−1/2
n wn√

n η
σ(ε,δn)

)
(30)

˜
Σ
−1/2
n wn is a 2J dimensional vector. The corresponding covariance matrix Σ̂n is an identity matrix I2J

of dimension 2J × 2J . Hence, under the null
˜

Σ
−1/2
n wn ∼ N (0, I2J). We define one more matrix which we

call as A which is

A =

[
IJ V
V V2

]
where V = Diag(σ(ε, δn)) (31)

By definition matrix A is a symmetric matrix which essentially means that there exist a matrix H
such that H>AH = diag(λ1, λ2 · · ·λr) where H>H = HH> = IJ . Now if we consider a random variable
N2 ∼ N (0, I2J) and N1 = HN2 then following holds asymptotically :(

˜
Σ
−1/2
n wn

)>
A

(
˜

Σ
−1/2
n wn

)
∼ (N2)>A (N2) ∼ (HN2)>A (HN2) ∼

r∑
i=1

λiχ
2,i
1

As a short remark, we would like to mention that the in this approach the weights for the weighted sum
of χ2-random variable are not directly dependent on the data which is essentially a good thing from the

privacy point of view. Sensitivity of Σ
−1/2
n wn can be computed in a similar way as in Theorem 3.1.

D Perturbed Samples Interpretation of Private Mean and Co-
Variance

In order to define differential privacy, we need to define two neighbouring dataset D and D′. Let us consider
some class of databases DN where each datset differ with another at just one data point. Let us also assume
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that each database carries n data points of dimension d each. Now if we privately want to release data then
we consider a function f : DN → Rnd which simply takes all n data points of the database and vertically
stack them in one large vector of dimension nd. It is not hard to see now that :

GS2(f) = sup
D,D′
‖f(D)− f(D′)‖2 ≈ O(diam(X )) (32)

where diam(X ) denotes the input space. Since the sensitive is way too high (of the order of diameter of
input space), the utility of the data is reduced by a huge amount after adding noise in it.

Here below now we discuss the perturbed sample interpretation of private mean and co-variance. That is
to anylyze what level of noise added directly on samples itself would follow the same distribution as private
mean. From Lemma D.1, we see that the variance of the noise come out to be much more tractable in private
mean case than adding noise directly to samples.

Lemma D.1. Let us assume that
√
nw̃n =

√
nwn + η where η ∼ N (0, cn ) for any positive constant c,√

nwn = 1√
n

∑n
i=1 zi and zis are i.i.d samples. Then

√
nwn → 1√

n

∑n
i=1 z̃i where z̃i = zi + ζ and ζ ∼

N (0, σ2
p) if σ2

p = c
n

Proof. It is easier to see that E [
√
nw̃n] =

√
nwn = E

[
1√
n

∑n
i=1 z̃i

]
.

Now, we try to analyze the variance of both the term.

c

n
= n

σ2
p

n

Hence, σ2
p = c

n

Now similar to lemma D.1, we want to translate the noise added in the covariance matrix to the sample
case. The empirical covaraince matrix Σn = 1

n−1

∑n
i=1(zi−wn)(zi−wn)>. For now, if we say (zi−wn) = ẑi,

then Σn =
∑n
i=1

ẑi√
n−1

ẑi√
n−1

>
. Now, adding a gaussian noise in each ẑi results in the following :

Σ̂n =

n∑
i=1

(
ẑi√
n− 1

+ ηi

)(
ẑi√
n− 1

+ ηi

)>
where ηi ∼ N (0, σ2(ε, δn))

=

n∑
i=1

(
ẑi√
n− 1

ẑi√
n− 1

>
+

ẑi√
n− 1

η>i + ηi
ẑi√
n− 1

>
+ ηiη

>
i

)
As can be seen by the above equations, we have similar terms like adding wishart noise in the covariance

matrix with 2 extra cross terms. Hence instead of using the matrix Σ̃n, one can use Σ̂n for Σn to compute
the weights for the null distribution i.e. weighted sum of chi-square in section 5.1.

E Additional experimental Details

We see that indeed the Type I error is approximately controlled at the required level for TCMC, TCS and
NTE algorithm, for both versions of the test, as shown in Figure 5, note that here we allow some leeway due
to multiple testing. Again, we emphasis that using the asymptotic χ2 distribution naively would provide
inflated Type I error as shown in Figure 6.

In Figure 7, we show the effect of the regularisation parameter γn on the TCS algorithm performance in
terms of Type I error and power on the SG, GMD and GVD datasets. For simplicity, we take γn = γ here,
rather then let it depend on the sample size n. From the results, we can see that if the γ to be too small,
we will inject too much noise, and hence we will lose power. Note that any γ > 0 will provide us differential
privacy, however if we choose it to be too large, our null distribution will now be mis-calibrated, hurting
performance. Hence, there is a trade off between calibration of the null distribution and also the level of
noise you need to add.
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Figure 5: Type I Error for the SG Dataset, with baselines ME and SCF, δ = 1e − 5. Left: Vary ε, fix
n = 10000 Left: Vary n, fix ε = 2.5
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Figure 6: Type I error for the SCF versions of the test, using the asymptotic χ2 distribution as the null
distribution.

F Proof of Theorem 5.1

Proof. The variance σ2
n of the zero-mean noise term n added to the mean vector wn is of the order O( 1

n2 ).
Hence the variance of

√
nn is of the order O( 1

n ). According to Slutsky’s theorem,
√
nw̃n and

√
nwn thus

converge to the same limit in distribution, which under the null hypothesis is N (0,Σ), with Σ = E
[
zz>

]
.

Similarly, the eigenvalues of the covariance matrix corresponding to the Wishart noise to be added in Σn

are also of the order O( 1
n ) which implies that Σ̃n + γnI and Σn + γnI converge to the same limit, i.e. Σ.

Therefore, s̃n converges in distribution to the same limit as the non-private test statistic, i.e. a chi-squared
random variable with J degrees of freedom.
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Figure 7: Type I error for the SG dataset , Power for the GMD, GVD dataset over 500 runs, with δ = 1e−5
for the TCS algorithm with different regularisations. Top: Varying ε with n = 10000. Bottom: Varying n
with ε = 2.5. Here Asym * represents using the asymptotic χ2 null distribution.
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